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Cryo-electron microscopy (cryo-EM), especially single-particle analysis, has

become a powerful technique for visualizing the structure of biological

macromolecules at high resolution. However, data acquisition in cryo-EM is

time consuming because it requires the collection of thousands of images to

achieve a high-quality reconstruction. Real-time preprocessing and display of

the images can greatly enhance the efficiency and quality of data collection. This

study presents AutoEMage, a new open-source software package that automates

data transfer, preprocessing and real-time display in cryo-EM experiments.

AutoEMage also includes a real-time data monitoring system that alerts users to

issues with their data, allowing them to take corrective actions accordingly. The

software is equipped with an easy-to-use graphical user interface that provides

seamless data screening and real-time feedback on data quality and microscope

status.

1. Introduction

Originating from a new generation of detectors, called direct

electron detectors, and advances in image processing algo-

rithms (Kühlbrandt, 2014), cryo-electron microscopy (cryo-

EM), especially single-particle analysis, has become a

commonly used method to determine the 3D structure of

macromolecular proteins at near-atomic resolution (Bai et al.,

2015). In the past decade, there has been an increase in the

deposition of cryo-EM structures in the Protein Data Bank

(PDB; https://www.rcsb.org/). As of August 2023, the EMDa-

taResource comprises a collection of over 30 000 EM maps

and nearly 17 000 PDB EM models. Notably, more than 5000

entries have been submitted reporting resolutions better than

4 Å, with a majority of these structures obtained through

single-particle analysis. (These and additional statistics can be

found at https://www.emdataresource.org/.)

Direct electron detectors, such as the Gatan K3, Thermo

Fisher Scientific Falcon 4i and Direct Electron Apollo, have

revolutionized cryo-EM by enabling single-electron counting

and high-frame-rate movie recording (Yang et al., 2021; Zhang

et al., 2023; Peng et al., 2023). These detectors can capture

thousands of movie stacks per day, automatically and without

the need for human intervention (Caesar et al., 2020).

However, numerous factors can potentially generate irrele-

vant images during data collection. These include significant

mechanical drifts of the sample stage, inaccurate autofocus by

the microscope, nonuniform ice thickness distribution,
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damaged carbon film and high astigmatism. Moreover, vitri-

fied samples that are susceptible to aggregation, preferential

orientation or denaturation on specific grids may also result in

invalid data. Therefore, the need for an efficient monitoring

tool has become paramount. With such a tool, users can

readily identify and discard unnecessary images during data

collection, selectively adjust microscope settings to exclude

suboptimal regions from acquisitions or re-evaluate their

samples. By adopting this proactive approach, researchers can

effectively prevent wasting time and resources on collecting

irrelevant data.

To increase data throughput and processing efficiency, the

cryo-EM community has developed a range of automatic

software tools. These tools streamline the data acquisition and

processing pipeline, enabling users to efficiently collect and

analyze high-quality cryo-EM data. For instance, the Smart

EPU software (Thermo Fisher Scientific Inc.), SmartScope

(Bouvette et al., 2022) and Smart Leginon (Cheng et al., 2023)

automate specimen screening and exclusion of problematic

grids and holes during data collection, optimizing data

acquisition settings accordingly. During data collection, soft-

ware tools like Scipion (Rosa-Trevı́n et al., 2016; Gómez-

Blanco et al., 2018; Sharov et al., 2021), cryoSPARC Live

(Punjani et al., 2017), Warp (Tegunov & Cramer, 2019),

RELION-4.0 (Kimanius et al., 2021; Fernandez-Leiro &

Scheres, 2017), TranSPHIRE (Stabrin et al., 2020) and Focus

(Biyani et al., 2017) offer real-time data processing capabil-

ities. They are very powerful and versatile, as they either have

their own preprocessing tools or integrate widely used tools.

As a result, they provide users with sophisticated functions

and pipelines to effectively handle various types of samples,

requiring minimal intervention. These software tools have

significantly improved the efficiency and throughput of cryo-

EM experiments by empowering users to make informed

decisions, optimize data acquisition settings and quickly assess

data quality.

Here we introduce AutoEMage, user-friendly Linux soft-

ware designed for cryo-EM data acquisition that offers auto-

mated data transfer, preprocessing and real-time display

capabilities. AutoEMage is built on Python3 and seamlessly

integrates popular software tools like MotionCor2 (Zheng et

al., 2017), CTFFIND4 (Rohou & Grigorieff, 2015), RELION-

4.0 (Kimanius et al., 2021) and IMOD (Mastronarde & Held,

2017). These tools enable tasks such as motion correction,

contrast transfer function (CTF) estimation, particle picking,

2D classification, class ranking and 3D model generation. The

processed results are promptly visualized through Auto-

EMage’s graphical user interface (GUI) and UCSF ChimeraX

(Pettersen et al., 2021), providing users with real-time data

screening and feedback on sample quality and electron

microscope status.

2. Implementation

2.1. Graphical user interface

Based on PyQt6 (Riverbank Computing, 2023), the primary

GUI comprises two panels displaying data and experiment

information. Above the two panels, a toolbar allows users to

input parameters and execute the automatic pipeline. Beside

the toolbar, a progress bar is included to provide users with a

clear indication of task progress. All tasks are performed by

Python and Perl scripts, with which AutoEMage interacts

through parameter files and log files.

2.2. Project management

To utilize the complete range of functions offered by

AutoEMage, including its monitoring and reminder features,

users must first log in to their account. Upon successful

authentication, a directory is automatically generated with the

username as its name, where all relevant files are stored.

Whenever users initiate a new task of file transfer, AutoEMage

starts a new project. For each project, AutoEMage creates a

new directory within the user directory to manage all relevant

files. Within this project directory, several sub-directories are

also created to store images and metadata for other processing

tasks such as motion correction, CTF estimation, particle

picking, 2D classification, class ranking and 3D model

generation. As AutoEMage utilizes some programs of

RELION, AutoEMage organizes these sub-directories in the

same way as RELION does.

2.3. Scripts

AutoEMage’s processing functions are implemented in

task-specific scripts. File transfer and motion correction are

carried out by Perl scripts titled Auto_mv, while CTF esti-

mation is performed by Perl scripts named Auto_ctf.

Automatic particle picking, 2D classification, class ranking and

3D model generation are controlled by a Python script named

autoemage_threads. These scripts call upon a few execu-

tables (such as MotionCor2 and CTFFIND4) and transmit

parameters through text files. To use the external software

tools, they have to be installed on the system and their paths

have to be added to environment variables. All scripts are

readable and editable, giving users the freedom to modify any

code as they see fit.

3. Data processing workflow

Upon the commencement of data acquisition, users are able to

initiate a data transfer task in AutoEMage. As the data are

transferred to the users’ external disk drive, a series of auto-

matic preprocessing tasks are executed sequentially, including

motion correction, CTF estimation, particle picking, 2D clas-

sification, class ranking and 3D model generation, as illu-

strated in Fig. 1. Throughout the preprocessing stage, data are

monitored and any outliers are promptly reported to users via

emails.

3.1. Data transfer

To begin a data transfer task, users need to click on the ‘file

transfer’ icon on the toolbar. They will then be prompted to

input various parameters into the corresponding interface.

These parameters include the detection mode, pixel size, total
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dose, particle diameter, image directory, disk directory, project

name and so on. These parameters can be saved to a text file

so that they can be loaded for future experimental sessions

that require similar settings. During data acquisition, the

electron microscope automatically saves thousands of images

on the computer. AutoEMage can detect these files by their

formatted names. For example, movie stacks stored by EPU

are named FoilHole_ . . .Data . . ._fractions. Then,

AutoEMage automatically transfers these files to an external

disk drive (a mobile hard disk drive or a disk array). At the

destination, the files are renamed in chronological order,

which determines the order in which they are processed and

displayed by AutoEMage. The transfer speed for a single

image is less than 2 s, which matches the pace of data acqui-

sition. This eliminates any delays in data transfer after data

acquisition. AutoEMage now supports data collected by EPU/

SerialEM software.

3.2. Preprocessing

During the course of a typical half-day data collection

process, the availability of real-time feedback regarding

sample quality and system status is

advantageous. However, the raw movie

stacks obtained through EM are often

dose-fractionated and visually unin-

formative. In order to overcome this

limitation, AutoEMage has been devel-

oped to automatically carry out a series

of preprocessing steps. These steps

include motion correction, CTF esti-

mation, particle picking, 2D classifica-

tion, class ranking and 3D model

generation. By performing these tasks,

AutoEMage facilitates the identification

and assessment of Thon rings and

particles in each image, as well as the

qualitative evaluation of 2D classes and

3D models across a batch of images.

Additionally, the preprocessing tasks

yield valuable physical variables such as

defocus and astigmatism, which are

graphed to provide insights into the

system status. AutoEMage is also

capable of processing three common

image formats: TIFF, MRC and EER.

3.2.1. Motion correction. First,

correcting for mechanical movement of

the sample stage and beam-induced

motion is crucial in order to obtain high-

quality micrographs with a high signal-

to-noise ratio. AutoEMage addresses

this issue by utilizing MotionCor2, a

software tool that performs global and

local alignment of movie stacks. The

relevant parameter settings for

MotionCor2, such as the number of

patches, the number of graphical processing units (GPU) and

B factor, are pre-programmed in the Perl scripts Auto_mv

and Auto_mv_corr. These scripts efficiently allocate GPU

resources and automate the alignment process for each raw

movie stack.

3.2.2. CTF estimation. Second, it is necessary to estimate

the CTF in order to correct the contrast of the micrographs.

This estimation process involves fitting a calculated CTF to the

power spectrum of a registered image, allowing for the

determination of lens defocus and astigmatism (Mindell &

Grigorieff, 2003). These parameters are valuable for assessing

the performance of the electron microscope, as discussed

further below. In AutoEMage, the CTF for each aligned

micrograph is calculated using the tool CTFFIND4. The

parameter settings for CTFFIND4 are encoded within the Perl

script named Auto_ctf_find. This script automates the

CTF estimation process, ensures consistent and accurate

results for each micrograph, and prepares necessary text files

for subsequent processing and display.

3.2.3. Particle picking. Third, the process of particle picking

involves identifying and extracting particles of various orien-

tations from the micrographs. This task typically requires a
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Figure 1
The data processing pipeline of AutoEMage. When data are continuously collected by automation
software such as EPU (Thermo Fisher Scientific Inc.) or SerialEM (Mastronarde, 2005),
AutoEMage begins its pipeline according to user specifications. The pipeline includes file
management tasks, i.e. data transfer and file backup, and pre-processing tasks, i.e. motion correction,
CTF estimation, particle picking, 2D classification, class ranking and 3D model generation.



significant amount of time and expertise when performed

manually, as a single micrograph can contain hundreds of

particles. Fortunately, modern algorithms such as template

matching (Tang et al., 2007) and convolutional neural

networks (Bepler et al., 2019) have made particle picking fully

automated, saving scientists from the laborious task of manual

selection. In AutoEMage, particle picking and extraction are

automated using the relion_autopick and relion_

preprocess programs from RELION-4.0. Two strategies

are available for users. Firstly, for computers with limited GPU

memory, the Laplacian-of-Gaussian (LoG) filter (Zivanov et

al., 2018) can be used for initial autopicking, treating the

resulting 2D classes as references. Subsequently, reference-

based autopicking can be employed for more accurate particle

picking in the remaining data. Alternatively, if the GPU

memory is sufficient (larger than 4 GB), LoG autopicking is

first performed to generate a set of 2D classes, which are then

used to train a Topaz model (Bepler et al., 2019). This trained

model is utilized to automatically pick particles in the

remaining data. In AutoEMage, users only need to input the

minimum and maximum particle diameters to enable non-

interactive particle picking. This streamlined process elim-

inates the need for manual intervention and simplifies the

particle picking workflow.

3.2.4. 2D alignment and classification. Fourth, the particle

images obtained in the previous step can be organized into

distinct 2D classes based on their orientations. This grouping

allows for the calculation of class averages, which improves the

signal-to-noise ratio of the images and is beneficial for

subsequent 3D reconstruction (Cheng et al., 2015). In

AutoEMage, the number of particles in each image is stored

and presented in the GUI. When the cumulative number of

particles exceeds a predefined threshold, such as 20 000, the

particles from these cumulative images are automatically

classified and averaged using the relion_refine program

in RELION-4.0. This program incorporates two types of

algorithms: the regularized likelihood optimization algorithm

(Kimanius et al., 2016) and variable-metric gradient descent

with adaptive moments estimation (Kimanius et al., 2021). In

AutoEMage, regularized likelihood optimization is utilized for

particles obtained through LoG autopicking, while variable-

metric gradient descent is employed for particles obtained
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Figure 2
Two kinds of outliers and the respective data. (a) Total drift during data acquisition. Data above the red dashed line are outliers with large drift. (b) One
of the outliers with large drift. Contamination takes up a large area of the image and total drift exceeds 30 Å. (c) CTF fitting score during data collection.
Data below the red dashed line are outliers with low CTF scores. (d) An image with a low CTF fitting score. An ice crack appears across the image and
the corresponding CTF score is below 0.08. Data are from our data set SPARTA.



through reference-based autopicking or Topaz neural

network autopicking. By employing these algorithms,

AutoEMage ensures the generation of high-quality class

averages, setting the stage for accurate and reliable 3D

reconstruction.

3.2.5. Class ranking and 3D model generation. Fifth,

utilizing the generated 2D class averages, we can identify and

select ‘good’ classes to create a 3D initial model. Traditionally,

this process requires manual effort and expertise, as it is done

in cryoSPARC Live (Punjani et al., 2017). However, with the

introduction of the relion_class_ranker program in

RELION-4.0, this task is now automated using a convolu-

tional neural network. The resulting ‘good’ classes are then

saved in .star files, which can be easily utilized in RELION

for subsequent processing steps, including 3D model genera-

tion and refinement. The generation of a 3D initial model is

accomplished through the utilization of the relion_

refine and relion_align_symmetry programs. This

automated approach streamlines the selection of high-quality

classes and facilitates the creation of a relatively accurate 3D

initial model.

3.3. Data screening

During data collection, irrelevant images are simulta-

neously screened so that they will not be included in subse-

quent processing. AutoEMage screens three types of

irrelevant images: images with significant drift, those with low

CTF fitting scores and images whose CTF resolution is worse

than 6 Å. The first type of bad data is detected by calculating

the drift between consecutive frames and the overall drift of

the movie stack. If the drift between two consecutive frames

exceeds 5 Å or the total drift of the movie stack exceeds 30 Å

[as shown in Figs. 2(a) and 2(b)], the movie stack is considered

an outlier. Such outliers are unlikely to contribute significantly

to ‘good’ classes or high-resolution 3D reconstruction. The

second type of bad data is identified using the CTF fitting

score, which reflects the visibility of Thon rings. If an image’s

power spectrum is heavily blurred and the Thon rings are

barely visible, its CTF score is typically below 0.08 [as shown in

Figs. 2(c) and 2(d)]. A low CTF score indicates that the image

may not be suitable for high-resolution reconstruction. The

third type of bad data is also filtered by the result of CTF

estimation through setting a threshold of 6 Å for the CTF

resolution. AutoEMage detects all types of outliers and moves

them to a designated folder named ‘Outliers’ for further

inspection by users. If users want to process the collected data

by themselves or share with others, they can directly use the

remaining ‘good’ data.

3.4. Demonstration

Upon the completion of each preprocessing step, Auto-

EMage provides immediate feedback to users by auto-

matically displaying the corresponding results in the main

GUI, different from Scipion (Rosa-Trevı́n et al., 2016) and

RELION-4.0 (Kimanius et al., 2021) that need user interac-

tion. AutoEMage’s performance was tested on two data sets:

TIR-APAZ proteins (SPARTA) from Crenotalea thermophila

(Crt) and �-galactosidase particles from the EMPIAR-10204

set (Electron Microscopy Public Image Archive; Iudin et al.,

2016), as shown in Fig. 3. The main GUI of AutoEMage

consists of two panels. The right panel primarily displays a

two-by-two grid of images and diagrams. In the top-left corner,
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Figure 3
The main GUI of AutoEMage during a 12 h data acquisition session. The display of images and diagrams is situated on the right panel enclosed by a
purple dotted rectangle. The left panel features a graph plotting multiple variables changing over time, which is enclosed by a green dashed rectangle.
The current experiment information is displayed above the graph and is encompassed by a red rectangle, while the toolbar and progress bar are shown
overhead encompassed by a blue rectangle.



the aligned micrograph currently being processed is shown,

allowing users to clearly visualize the target particles. The

bottom-left panel displays the result of the CTF calculation,

where Thon rings can be inspected to assess the quality of the

micrograph. The top-right panel presents the trajectory of

global frame movement in the current movie stack, providing

insights into the overall motion of the sample. Finally, the

bottom-right panel shows the trajectories of patch frame

movement in the movie stack, offering a detailed view of the

local motion patterns. These images and diagrams collectively

provide users with an overview of the sample’s quality and

allow for quick assessment of the preprocessing results.

The left panel of the main GUI in AutoEMage provides

information about the current experiment and includes a

graph that plots various physical variables that change over

time. These variables include lens defocus, astigmatism,

astigmatism angle, maximum resolution of the CTF fitting and

disk drive usage, among others. Below the graph, users can

specify a time slot to view the data for each variable at any

given time period. This feature allows users to track and

analyze trends in the plotted variables. Some of these vari-

ables, such as lens defocus and astigmatism angle, can reflect

the status of the electron microscope. Over time, as the sample

stage in the electron microscope undergoes mechanical

movements, system errors may gradually accumulate, resulting

in observable shifts in these variables. For example, if the lens

defocus continuously deviates from the mean value of

previous data points, AutoEMage will automatically detect

this trend and send a reminder email to users. This email

serves as a prompt for users to check the settings of the

electron microscope and take action, such as stopping data

acquisition, if required. This proactive approach helps ensure

that any potential issues with the microscope are identified in

a timely manner, allowing users to maintain the quality and

integrity of their data.

The average of multiple 2D classes is shown in Fig. 4, each

providing a unique perspective on the 3D target particle. As

data processing continues, users will observe different 2D class

averages for every 20 000 particles (this number can be

modified accordingly). The quality of the data can be assessed

by the presence of a substantial number of well defined and

detailed 2D class averages. Ideally, there should be more than

15 such classes. In contrast, images of poor quality tend to

contain only a few ‘good’ classes, usually below ten. With

access to these processed results ‘on-the-fly’, users can eval-

uate the quality of their samples with more depth, which

enables them to make informed decisions and adjust their

experimental settings accordingly. For instance, if the samples

are of poor quality, users can choose to halt the current data

collection rather than wait for an additional 10 h. This

proactive approach allows users to optimize their data

acquisition strategy and avoid wasting time and resources on

low-quality samples.

Fig. 5 displays the 3D model obtained through Auto-

EMage’s automated processing pipeline, utilizing 20 000

particles. The figure includes the postprocessed map as well as

the corresponding Fourier shell correlation (FSC) curve for

�-galactosidase from the EMPIAR-10204 data set. Notably,

the resolution at 0.154 FSC is determined to be 3.2 Å, which

aligns with the value reported in the related Electron Micro-

scopy Data Bank (Lawson et al., 2016) entry EMD-6840 (T.

Kato, N. Terahara & K. Namba).
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Figure 4
The GUI of 2D classes. For every 20 000 picked particles, 2D classification and class ranking is automatically performed and classes whose score is above
a pre-defined threshold are displayed. Above each class average, the number of classified particles and the estimated resolution are also displayed. Data
are from the EMPIAR-10204 set.



3.5. Monitoring and reminding

AutoEMage offers a solution to address the challenge of

users having to remain near the electron microscope for

extended periods during data collection. It incorporates an

automated outlier detection system that identifies problematic

data and sends email notifications to users, allowing them to

come back and check the microscope settings accordingly.

During a typical data acquisition session, a large number of

images are recorded, and it is common to encounter some bad

data. However, if a significant number of bad images occur

with a certain frequency (e.g. ten outliers out of 50 consecutive

movie stacks), they are considered outliers. The presence of

these outliers may indicate potential errors with the micro-

scope status or specimen quality. In such cases, AutoEMage

automatically sends an email notification to the respective

user as a reminder. AutoEMage can currently identify three

types of outliers: images with significant drift, those with low

CTF fitting scores and images with deviated defocus. The first

two types of outliers are described in Section 3.3. The third

type refers to images whose defocus values fall outside the

range set by the microscope. In addition to outlier detection,

AutoEMage also sends email notifications when data collec-

tion is complete or when the external disk drive reaches its

storage capacity. These email notifications enable users to stay

informed about the progress of their data collection and

remotely monitor the process, eliminating the need for

constant physical presence.

4. Software speed performance

AutoEMage was installed on two different machines for

testing and performance assessment. The first machine is an

Ubuntu 20.04.6 computer with 24 cores and 48 threads in total.

It has 32 GB of RAM and a 3 TB SSD for data storage. This

machine also has an NVIDIA Quadro P620 GPU card

installed, which has 2 GB of video memory. The second

machine is a Rocky Linux 8.7 server located at the Cryo-EM

Center, School of Advanced Agricultural Sciences, Peking

University. It is equipped with 32 cores and 64 threads in total,

along with 128 GB of RAM and a 20 TB SSD for data storage.

The server also has an NVIDIA GeForce RTX 4090 GPU card

installed, which has 24 GB of video memory.

For the provided hardware configurations, the processing

times for different steps of the AutoEMage workflow are as

follows. File transfer, CTF estimation, LoG autopicking and

class ranking each take around 3 s for a single 4k � 4k raw

movie stack with 50 frames. Motion correction, which is done

sequentially because of the single GPU, takes around 3 min

for a raw movie stack on the Ubuntu computer. However, on

the server with the better GPU, it takes less than 8 s for the

same task. 2D classification takes less than 30 min for around

20 000 particles from more than 90 images, which barely

catches up with the speed of data acquisition. 3D model

generation takes around 30 min for ‘good’ classes selected

from more than 14 000 particles, but the same task takes

around 5 min on the server. On the basis of these processing

times, it can be observed that CTF estimation, autopicking, 2D

classification and class ranking are all ahead of the speed of

data acquisition. However, motion correction and 3D model

generation are slower and fall slightly behind the speed of data

collection on the Ubuntu computer. On the server with the

better GPU, the processing speed of motion correction and 3D

model generation can catch up with the speed of data acqui-

sition. Additionally, computers equipped with more GPUs can

further accelerate the processing speed by parallelization and

match the speed of data collection. The processing times for

each step of preprocessing with multiple data sets are shown in

Table 1.

5. Discussion

In this paper, we introduce AutoEMage, open-source user-

friendly software specifically developed for real-time data

transfer, preprocessing and evaluation during the cryo-EM

data acquisition process. The main objective of AutoEMage is

to enhance data collection strategies by enabling users to

monitor image quality and the status of the electron micro-

scope. Additionally, AutoEMage includes a scientific data

screening method, which offers valuable insights for subse-

quent data processing.
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Figure 5
(a) The postprocessed map and (b) the corresponding FSC curve of �-galactosidase from the EMPIAR-10204 set. The resolution is around 3.2 Å.



AutoEMage is an open-source program, meaning that its

source code is freely available for users to access, modify and

contribute to its development. This allows academic or

authorized users to customize and extend the functionality of

AutoEMage according to their specific requirements. The

software is designed to be easy to install and use, and inter-

ested users can download AutoEMage from the GitHub

repository at https://github.com/FanLabIOP/AutoEMage.

In the future, we plan to enhance AutoEMage with addi-

tional functionality to further improve its utility and conve-

nience for users. We aim to develop an image segmentation

tool within AutoEMage. This tool will focus on extracting

particles from images that were previously considered

unusable due to defects like cracks or contamination. By

extracting valuable particle information from these images,

the data throughput of the imaging process can be improved.

We also plan to explore the development of web applications

that allow users to remotely control AutoEMage. This elim-

inates the need for users to download the software or be

physically present in front of their computers to use it.

Moreover, instead of relying solely on emails, we will inves-

tigate the use of mobile messages or social media for more

timely reminders. This approach ensures that users receive

important notifications promptly, reducing potential delays.

Furthermore, AutoEMage aims to provide real-time feedback

to users during data acquisition. This includes the possibility of

automatic parameter adjustment based on previously

processed results. As sample characteristics may vary, default

parameter settings may not be optimal for all circumstances.

By analyzing preliminary results and allowing users to adjust

parameters on this basis, AutoEMage can help users obtain

better results and potentially achieve higher-resolution 3D

structures. These proposed additions will further enhance the

functionality, usability and efficiency of AutoEMage, making it

a more powerful and user-friendly tool for cryo-EM data

acquisition and analysis.
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Kühlbrandt, W. (2014). Science, 343, 1443–1444.
Lawson, C. L., Patwardhan, A., Baker, M. L., Hryc, C., Garcia, E. S.,

Hudson, B. P., Lagerstedt, I., Ludtke, S. J., Pintilie, G., Sala, R.,
Westbrook, J. D., Berman, H. M., Kleywegt, G. J. & Chiu, W. (2016).
Nucleic Acids Res. 44, D396–D403.

Mastronarde, D. N. (2005). J. Struct. Biol. 152, 36–51.
Mastronarde, D. N. & Held, S. R. (2017). J. Struct. Biol. 197, 102–113.

computer programs

8 of 9 Yuanhao Cheng et al. � AutoEMage J. Appl. Cryst. (2023). 56

Table 1
Processing time for each step of preprocessing with multiple data sets.

Detector/image
size (MB) Symmetry

Pixel size
(Å)/box
size (pixel)

Data
transfer
for a raw
movie
stack (s)

Motion
correction
for a raw
movie
stack† (s)

CTF
estimation
for one
micrograph
(s)

Particle
picking and
extraction
for one
micrograph† (s)

2D
classification
for �20 000
particles†
(min)

3D model
generation
for �14 000
particles†
(min)

EMD-22025
(�-galactosidase)‡

Gatan K2/260 C2 0.885/256 <1 �180/8 <2 <4/1 �28/3 �27/5

EMD-35787
(LHCII-nanodisc)§

Gatan K3/380 C1 1.04/200 <1 �240/10 <3 <5/1 �30/3 �30/5

Ferritin (Unpublished) Falcon 4i/256 O 0.96/180 <1 �180/8 <2 <4/1 �28/3 �20/5

† The two sets of values are for two types of GPU: NVIDIA Quadro P620/NVIDIA GeForce RTX 4090. ‡ McSweeney et al. (2020). § Ruan et al. (2023).
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